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Integrated Analysis of Gene 
Expression Differences in Twins 
Discordant for Disease and Binary 
Phenotypes
Sivateja Tangirala & Chirag J. Patel   

While both genes and environment contribute to phenotype, deciphering environmental contributions 
to phenotype is a challenge. Furthermore, elucidating how different phenotypes may share similar 
environmental etiologies also is challenging. One way to identify environmental influences is through 
a discordant monozygotic (MZ) twin study design. Here, we assessed differential gene expression 
in MZ discordant twin pairs (affected vs. non-affected) for seven phenotypes, including chronic 
fatigue syndrome, obesity, ulcerative colitis, major depressive disorder, intermittent allergic rhinitis, 
physical activity, and intelligence quotient, comparing the spectrum of genes differentially expressed 
across seven phenotypes individually. Second, we performed meta-analysis for each gene to identify 
commonalities and differences in gene expression signatures between the seven phenotypes. In 
our integrative analyses, we found that there may be a common gene expression signature (with 
small effect sizes) across the phenotypes; however, differences between phenotypes with respect 
to differentially expressed genes were more prominently featured. Therefore, defining common 
environmentally induced pathways in phenotypes remains elusive. We make our work accessible 
by providing a new database (DiscTwinExprDB: http://apps.chiragjpgroup.org/disctwinexprdb/) for 
investigators to study non-genotypic influence on gene expression.

Gene expression is influenced by both inherited and non-inherited (or environmental) factors; however identify-
ing how environment influences phenotype, such as disease, remains a challenge1. A common approach to iden-
tify differentially expressed genes in disease is the case-control study. Case-control studies involve the matching 
of affected individuals with healthy controls to assess the differences of gene expression in cases versus controls. 
However, it is difficult to identify the causes of differences of gene expression with respect to inherited factors, 
environmental, or phenotypic state; further, associations may be biased due to confounding variables.

One way to partition the role of environment and inherited factors in gene expression is to use a family-based 
twin-design, whereby twins are discordant for phenotypes. For example, monozygotic (MZ) discordant twins 
are twins that share the same genome but are discordant for a phenotype (e.g., one twin has a certain phenotype, 
the other does not). The monozygotic discordant twin study design provides a natural study design in order to 
identify significant genes for a particular phenotype after controlling for non-temporally dependent variables, 
such as shared genetics, sex, and age2.

Is there a consistent gene expression signature of environmental influence? Or, how much does gene expres-
sion due to potential environmental influence vary across phenotypes? We hypothesized that integrating gene 
expression data from multiple phenotypes can allow the elucidation of heterogeneity of discordant gene expres-
sion (how gene expression differences between twins vary) and furthermore, gene signatures across phenotypes. 
More specifically, we claim it is possible to measure cross-phenotype heterogeneity by meta-analyzing across 
mean expression differences for each gene from discordant twin samples. As of this writing, gene expression data 
from discordant twin samples have not been utilized to perform such analyses.

Our study’s goal was to identify significant differentially expressed genes between samples of affected and 
non-affected MZ twin pairs and integrate mean expression differences across seven phenotypes. We hypothe-
size that it is possible to detect potential environmentally modulated gene expression values shared and distinct 
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among different phenotypes. We further claim that identifying genes that are different and shared among numer-
ous phenotypes will shed light on shared environmental etiology in phenotypic variation.

In order to identify genes in discordant twins, we formulated a computational approach in four parts. First, 
we queried public repositories such as the Gene Expression Omnibus3 (GEO) for gene expression studies of 
discordant monozygotic twin pairs. Next, we identified significantly altered genes in twin pairs that are dis-
cordant for each of the seven phenotypes. We then compared gene signatures across the seven phenotypes in 
a pairwise fashion and by using a meta-analytic approach. Last, we hypothesized that sex may also play a role 
in gene expression variation; thus, we attempted to identify genes in a sex-specific manner across multiple 
phenotypes.

Results
Differential gene expression analysis in each of the seven phenotypes individually.  For our 
gene expression analyses we used expression data from the Gene Expression Omnibus3 (GEO), Array Express4 
(AE), and a study from the Database of Genotypes and Phenotypes5 (dbGAP) study (Fig. 1, Table 1). The 
seven phenotypes we interrogated included 4 diseases such as chronic fatigue (CFS), major depressive disor-
der (MDD), ulcerative colitis (UC), intermittent allergic rhinitis (IAR in vitro), and 3 phenotypes including 
physical activity (PA), obesity (OB), intelligence quotient (IQ). To ensure adequate power for detection, we 
used seven studies that each had at least 10 twin pair samples. The sample sources (tissues and cell lines) 
used by the studies included peripheral blood, lymphoblastoid cell lines, adipose tissue, muscle tissue, and 
colon tissue (Table 1). All results are accessible via our R Shiny web application (http://apps.chiragjpgroup.
org/disctwinexprdb/).

We performed differential gene expression analysis on each of the monozygotic discordant twin gene expres-
sion studies, performed meta-analysis of probe-level (transcript-level) values to obtain gene-level values6, and 
corrected the p-values for each gene-level value using the false discovery rate (FDR) method7. In order to mini-
mize the false positive rate (FPR), Sweeney et al. suggested to utilize stringent significance and effect size thresh-
olds6. Therefore, we identified significant differentially expressed genes for each phenotype that fell under a FDR 
threshold of 0.05 and had an effect size threshold greater than the 95th percentile of the absolute value of mean 
gene expression differences in each phenotype (Figs 2, S1). Figure S1 shows the empirical cumulative distribution 

Figure 1.  Analysis Procedure. A schematic diagram depicting the analysis pipeline. (1) Data Selection involved 
a filtration process for selecting twin expression datasets. (2) Differential Expression Analysis was carried out 
(using probe or transcript-level values) to find significant differentially expressed transcripts using FDR and 
effect size thresholds. (3) Meta-Analytic Gene Level Summarization was carried out to summarize transcript-
level differences to gene-level differences.

http://apps.chiragjpgroup.org/disctwinexprdb/
http://apps.chiragjpgroup.org/disctwinexprdb/
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of mean differences for each phenotype. The number of significant genes ranged from a total of three significant 
in chronic fatigue syndrome (CFS) to 677 in intelligence quotient (IQ). Overall, the total number of unique sig-
nificant genes across all the seven datasets was 1,286 out of the 25,154 total number of genes measured across all 
of those datasets (5%).

Across the seven studies (phenotypes) incorporated into our analyses, we found that intelligence quotient (IQ) 
had 30 of the most significant genes (with FDR less than 0.05 and mean difference greater than the absolute value 
effect size threshold of the 95th percentile). Out of the disease phenotypes incorporated into our study, intermit-
tent allergic rhinitis (IAR in vitro) had the most significant gene (COQ5 [Coenzyme Q5, Methyltransferase], a 
gene involved in methyltransferase activity) with a FDR value of 2.4E-09 (mean difference = 105 units, or affected 
twins had higher gene expression than their unaffected twin pair).

The disease with the highest total number of significant genes out of the ones included in our analysis was UC 
(424 significant genes) and the one with the least was CFS (three significant genes). The non-disease phenotype 
with the highest total number of significant genes was IQ (677 significant genes) and the one with the least was 
physical activity (PA, 15 significant genes).

Little overlap of differentially expressed genes in discordant twins across seven phenotypes.  
Next, we computed the pairwise similarity of gene expression between phenotypes in two ways. First, we com-
puted the intersection between genes found significant between phenotypes. Second, we correlated the expression 
differences using a nonparametric Spearman correlation.

We report the percentage of the number of overlaps of significant genes out of the number of overlaps of 
measured genes for pairs of phenotypes (Tables 2, S1, and S2). We found that the phenotype pair with the highest 
number of overlapping significant genes was UC and IQ (16 genes or ~0.09% of total possible genes that over-
lapped, Table 2). The disease-disease pair with the most number of overlapping significant genes was OB and UC 
(13 genes or 0.06% of the total possible genes). The average percent of overlapping genes between phenotypes was 
0.009%.

The pairwise Spearman correlations between the mean expression differences for each of the phenotype pairs 
were modest (Table 3). The absolute value of Spearman correlation coefficients ranged from 7.9E-4 to 1.8E-1.We 
found no significant correlations (with an unadjusted p-value threshold of 0.05) between the mean gene expres-
sion differences.

Discordant twin gene expression is heterogeneous across seven phenotypes.  We hypothe-
sized that it is possible to identify shared environmental etiology between phenotypes by identifying genes 
across multiple phenotypes. We performed meta-analysis (using the Dersimonian and Laird meta-analytic 
technique8) on each gene across all seven possible phenotypes to (1) estimate the overall mean difference 
of each gene across seven phenotypes (genes putatively expressed in greater than one phenotype) and (2) 
estimate how each gene’s mean expression difference varied across all of the seven studies (gene expression 
heterogeneity). The empirical cumulative distribution of meta-analyzed mean differences is shown in Fig. S2. 
The I2 (heterogeneity) estimates versus the negative log (base 10) of FDR-corrected QEp values (measure of 
significance of I2 different from 0) is depicted in Fig. S3 and the empirical cumulative distribution plot of I2 
values is shown in Fig. 3.

First, we discuss genes that were expressed over all phenotypes in discordant twins. We identified 19 out 
of the 25,154 total genes (0.08%) that were differentially expressed in discordant twin samples across multiple 
phenotypes (FDR-corrected p-value of mean difference less than 0.05, mean difference greater than the absolute 
value effect size threshold of the 95th percentile, and measured in more than one study; Fig. S2). The top sig-
nificant differentially expressed genes (significant genes that were measured for multiple phenotypes) included 
those that are involved in keratinization such as KRTAP19-5 (Keratin Associated Protein 19-5) and KRTAP20-
2 (Keratin Associated Protein 20-2). A third included FGF6 (Fibroblast Growth Factor 6), a gene involved in 

Study identifier Reference(s)

Number 
of Twin 
Pairs Phenotype

Number 
of Genes Platform

Sample 
Source(Tissue 
and cell lines) Source

GSE22619 Lepage et al.20, 
Häsler et al.21 10 ulcerative colitis (UC) 22836 GPL570 Primary mucosal 

tissue, colon GEO

GSE16059 Byrnes et al.10 44 chronic fatigue syndrome 
(CFS) 22836 GPL570 Peripheral venous 

blood GEO

GSE20319 Leskinen et al.22 10 physical activity (PA) 19429 GPL6884 Musculus vastus 
lateralis GEO

GSE33476 Yu et al.23 17 intelligence quotient(IQ) 18638 GPL6244 Lymphoblastoid 
cell lines GEO

GSE37146 Sjogren et al.24 11
intermittent allergic 
rhinitis (in vitro) (IAR_
invitro)

19580 GPL6102 Peripheral blood 
mononuclear cells GEO

MDD(dbGAP) Wright et al.25 28 major depressive disorder 
(MDD) 19284 GPL13667 Peripheral blood dbGAP

E-MEXP-1425 Pietiläinen et al.26 13 obesity (OB) 22836 GPL570 Adipose tissue Array Express

Table 1.  Summary of Datasets. This table shows the phenotype and number of genes being measured, sample 
size, platform, tissue, source, and reference paper for each of the seven studies.
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Figure 2.  Volcano plots for seven phenotypes. The mean differences versus the negative log (base 10) of FDR 
for the seven phenotypes (each with greater than 10 twin pairs). The blue color indicates FDR significant genes 
(FDR < 0.05) and the red color indicates FDR nonsignificant genes. The black lines indicate the effect size 
thresholds (95th percentile of absolute value of mean expression differences for each phenotype).

Phenotype PA UC IAR_invitro CFS IQ MDD OB

PA 0.08 0.01 0.00 0.00 0.00 0.00 0.00

UC 0.01 1.86 0.01 0.00 0.09 0.01 0.06

IAR_invitro 0.00 0.01 0.37 0.00 0.01 0.00 0.00

CFS 0.00 0.00 0.00 0.01 0.00 0.00 0.00

IQ 0.00 0.09 0.01 0.00 3.63 0.00 0.01

MDD 0.00 0.01 0.00 0.00 0.00 0.03 0.01

OB 0.00 0.06 0.00 0.00 0.01 0.01 0.59

Table 2.  Percentages of Overlaps of Significant (FDR < 0.05 and Absolute Value Effect Size Threshold of 95th 
percentile) Genes. This table shows the percentages of overlapping significant genes in phenotype pairs out of 
the total overlapping measured genes in those pairs.
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normal muscle regeneration, all with FDR values less than 3.7E-4. We found no genes that were significant overall 
(FDR-corrected p-value of mean difference <0.05, mean difference greater than the absolute value effect size 
threshold of the 95th percentile, and measured in more than one study) and that were also significant in individ-
ual disease phenotypes.

Second, we discuss overall heterogeneity of the differentially expressed genes. Out of all the 25,154 genes 
measured, 2,401 genes (10%) were found to have FDR-corrected QEp (measure of significance of I2) values less 
than 0.05, corresponding with I2 values of greater than 68%. None of the overall significant (FDR-corrected 
p-value of mean difference less than 0.05, mean difference greater than the absolute value effect size threshold 
of the 95th percentile, and measured in more than one study) genes were found to also have FDR-corrected 
QEp values less than 0.05. Also,we found 40% of all measured genes to have I2 values of 0. In fact, 11 out of the 
19 significant genes were found to have an I2 values equal to 0. The gene with the highest I2 estimate (47%) was 

Phenotype PA UC IAR_invitro CFS MDD IQ OB

PA 1.00 0.00 −0.02 0.02 0.01 0.02 0.00

UC 0.00 1.00 −0.01 0.18 0.04 0.07 0.04

IAR_invitro −0.02 −0.01 1.00 0.00 0.03 −0.04 0.00

CFS 0.02 0.18 0.00 1.00 0.18 0.09 −0.13

MDD 0.01 0.04 0.03 0.18 1.00 0.03 −0.04

IQ 0.02 0.07 −0.04 0.09 0.03 1.00 −0.02

OB 0.00 0.04 0.00 −0.13 −0.04 −0.02 1.00

Table 3.  Spearman correlations of mean gene expression differences between phenotypes. This table shows the 
Spearman correlations between seven phenotypes in each phenotype pair.

Figure 3.  Empirical Cumulative Distribution Function Plot of I2 values. The distribution of all measured genes 
(from the seven studies) among their I2 values.
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ZNF12[Zinc Finger Protein 12] (mean difference of −0.13 and FDR-corrected p-value of mean difference of 
0.04), a gene involved in transcription factor activity. We have little data to support that differential expression for 
most genes across multiple phenotypes is heterogeneous.

Sex-specific gene expression heterogeneity across three phenotypes (MDD, OB, CFS).  We 
hypothesized that sex may play a role in differences in gene expression across twins. For the three phenotypes 
(MDD, CFS, and OB [Table 1]) that had samples labelled with sex, we carried out sex-specific differential expres-
sion analyses and meta-analyzed over each gene’s expression values (for each sex group separately).

For males, we found 9 overall significant genes (overall FDR-corrected p-values of mean difference <0.05, 
mean difference greater than the effect size threshold of the 95th percentile of absolute value of mean expres-
sion differences, and measured in more than 1 phenotype). The most significant genes (with overall FDR values 
<1.4E-7) were PTPRN (Protein Tyrosine Phosphatase, Receptor Type N), a gene involved in phosphatase activity 
and TRNT1 (TRNA Nucleotidyl Transferase 1), a gene involved in nucleotidyltransferase activity. Next, we iden-
tified significant genes (using FDR and effect size thresholds) that had extremely low I2 (heterogeneity) estimates 
(0%) across male groups from all three phenotypes. We found all 9 genes to have I2 values of 0. Of those genes, 
the ones with the lowest FDR values were again PTPRN and TRNT1. All of the overall significant genes for males 
had I2 estimates equal to 0%, suggesting that the significant genes in males have expression levels that are similar 
across different phenotypes.

For females, we found 12 overall significant genes (overall FDR < 0.05, mean difference greater than the abso-
lute value effect size threshold of the 95th percentile, and measured in more than 1 phenotype). The most signif-
icant genes (with overall FDR values < 7E-3) were RPL22 (Ribosomal Protein L22), a gene involved in poly(A) 
RNA binding, WFDC1 (WAP Four-Disulfide Core Domain 1), a gene involved in growth inhibitory activity, and 
DHX40 (DEAH-Box Helicase 40), a gene involved in helicase activity. Out of the 12 overall significant genes, 
we found 11 genes to have I2 of 0. The overall significant gene with the highest I2 estimate (99%) was MS4A4A 
(Membrane Spanning 4-Domains A4A). Except for MS4A4A, we found that all other female-specific overall sig-
nificant genes had I2 estimates equal to 0%. While we found similar number of genes differentially expressed in 
male and female groups of discordant twin pairs, there was no overlap between the sexes.

Checking for Batch Effects.  We were cautious of possible batch effects impacting our analyses. In order 
to check for possible batch effects, we utilized the COmbat CO-Normalization Using conTrols (COCONUT9) 
tool to batch correct the samples and ran our differential analysis pipeline on these batch-corrected samples. We 
compared the results of the samples prior to the correction with the results after the correction by correlating 
the mean differences obtained before and after correction. The correlations ranged from 0.72 (OB) to 0.95(IQ) 
(Table S3). We also specifically computed the Spearman correlations between the mean differences obtained 
before and after correction of genes found significant (only using FDR < 0.05 threshold in differential analyses 
prior to correction). These correlations ranged from 0.88(UC) to 1(MDD) (Table S4). We did not have evidence 
to support that batch correction would significantly alter the findings. Therefore, to increase sensitivity of the 
number of genes queried, we decided to report non-corrected results.

Discussion
We present a computational workflow to execute differential expression using discordant twin samples across 
multiple (previously) disparate phenotypes. In addition, our work has resulted in an online database resource 
(DiscTwinExprDB: http://apps.chiragjpgroup.org/disctwinexprdb/) for researchers to query differentially 
expressed genes in discordant twins. Briefly, we first identified genes differentially expressed in seven different 
phenotypes (each with at least ten twin pair samples) by finding differences in transcript-level (probe-level) 
expression values and meta-analyzing those transcript-level differences to get overall gene-level differences using 
monozygotic (MZ) discordant twin samples.

There have been multiple investigations (whose data have been deposited in the GEO and dbGaP repositories) 
that have been published recently utilizing the MZ discordant twin study design to perform differential expres-
sion analyses such as Byrnes et al.10 (GEO: GSE16059). It is important to note that most of these studies have 
reported transcript-level (probe-level) values. For most microarray platforms, multiple probes map to the same 
gene and each probe sequence has different binding affinity leading to ‘different measurement scales’ (Ramasamy 
et al.11). Hence, rather than reporting the transcript-level values, summarizing those values to gene-level values by 
meta-analyzing over each gene’s corresponding probe-level values may yield more interpretable results11. While 
studying expression at the transcript or gene-level is of debate11, here, rather than studying differential expression 
on the transcript level, we used the meta-analytic gene-level summarization technique (as has been implemented 
previously by Sweeney et al.6). We hypothesize that the use of this technique provides better power than alter-
native transcript-level methods; in fact, we showed that we were able to detect more genes (found total of 10 
significant genes) than the Byrnes et al.10 investigation (this study detected none).While we claim investigating 
gene-level expression differences enhances interpretability, further study must be devoted to systematically test 
what methods yield more power.

We note the variation in the magnitude of mean expression differences across the different phenotypes and 
studies. The inter-study variation may be explained by the diverse platforms, sample preparation and processing, 
sample types, and sample sizes of the different studies. Furthermore, the variation may also be explained by the 
vast potential differences in mechanisms of environmental exposure or phenotype itself on gene expression. To 
enhance comparability across studies, we also reported the ranks of the gene expression differences within each 
study in our R Shiny web application.

Our study is also the first–to the best of our knowledge–to carry out differential gene expression analysis in 
MDD discordant twin pair samples. We identified five significant differentially expressed genes. Many of these 

http://apps.chiragjpgroup.org/disctwinexprdb/
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genes have not been identified as being directly associated with MDD in scientific literature before and these 
genes need to be replicated. However, a few of these genes were mentioned as being associated with depression 
and alternative splicing of exons (for example TRA2B12).

One factor that may play a role in population-level differences in gene expression includes sex. By stratifying 
our analyses by sex, we have identified multiple significant differentially expressed genes in the sex-specific anal-
yses that appear to be involved in protein and RNA binding activity. For example, PTPRN and TRNT1, which 
we have identified to be significant in the male-specific analyses, both appear to play a role in enzyme binding 
activity. We also observed that in the female-specific analyses, the most significant genes appeared to be enriched 
for RNA binding. There was little to none overlap of overall significant genes between the sexes. We found an 
intersection of 2 genes between the gender groups with a less stringent effect size threshold initially and after 
using a more stringent absolute value effect size threshold (95th percentile of absolute value of mean expression 
differences) we found no overlap. It is unclear why such a difference manifests between sexes and more investiga-
tions must commence to uncover the causative role of sex in phenotype13.

From our overall meta-analysis, we identified genes across various studies with low I2 (heterogeneity) esti-
mates and relatively few with higher I2. For example, we found that genes such as those involved in keratinization 
were expressed across all of the phenotypes (e.g. KRTAP19-5), but we lacked power to implicate these genes in 
any single phenotype. Second, these genes exhibited little heterogeneity and were not found significant in any one 
phenotype, suggesting a critical role across phenotypes. As the reader may know, these genes are known to play an 
integral role in hair shaft formation14. Most of the overall significant genes were found to have little heterogeneity 
(variance across multiple phenotypes) suggesting that, while there may be a common discordant differential gene 
expression signature across disparate phenotypes, their effect sizes (difference) is modest.

In conclusion, we found genes significantly expressed in discordant twins are specific to phenotype and we 
have little evidence to support shared environmental etiology between these seven phenotypes. For example, 
we found little overlap between genes expressed in disparate phenotypes (on average, 0.009% of co-measured 
genes). Second, from our meta-analysis, we identified overall common differential gene expression signatures for 
the phenotypes, but these signatures were not identified in individual phenotypes. This suggests that if there is a 
common thread of gene expression across disparate phenotypes, the effects are probably small.

Our work has multiple limitations. One limitation to our and other studies using monozygotic discordant twin 
pair samples is that they are relatively small in number (sample size range for individual phenotypes was 10 to 
44 pairs and total sample size was 92 pairs). It is a challenge to recruit and assay identical twins and even collect 
publicly available data for a given phenotype. Relatedly, and critically, genes we report need to be followed up and 
replicated in other twin investigations. Our second limitation was the lack of adequate datasets with sufficient 
sex information to untangle the role of sex in differential gene expression. Third, while studying MZ twins is a 
natural way to control for the role of inherited factors in gene expression variation, we cannot rule out the role of 
the disease or phenotype itself in modulating gene expression (e.g., reverse causality). One phenotype for which 
this is readily apparent is physical activity. For example, it is possible that the phenotypic state itself may induce 
changes in gene expression decoupled from environmental influence. A way to mitigate the chance of reverse 
causation for disease-related phenotypes includes incorporating time into the analysis, such as following twin 
pairs through the life course. In the future, we aim to collect twin data in an unbiased manner to ascertain the role 
of reverse causation in expression to deconvolve the role of phenotype on gene expression change. We emphasize 
that more resources devoted to the functional and biological differences between discordant and concordant 
twins should be developed and made available to enhance replication and study design, such as the impactful 
TwinsUK cohort15. To enable investigations across the studies analyzed here, we provide a web-accessible data-
base (DiscTwinExprDB) for straightforward reuse of our analyses in other integrative contexts.

We hope that our work will inspire future studies to further understand the role of the environment in mul-
tiple phenotypes, eventually leading to the identification of environment-specific influences in multiple disease 
phenotypes.

Methods and Materials
A schematic diagram depicting our analysis workflow is shown in Fig. 1.

MZ Discordant Twins’ Gene Expression Data.  We collected gene expression datasets from the Gene 
Expression Omnibus3 (GEO: https://www.ncbi.nlm.nih.gov/geo/) [Table 1]. The other data sources we used for 
our analyses were the Database of Genotypes and Phenotypes4 (dbGAP) and Array Express5 (AE). We used the 
phs000486.v1.p1 (“Integration of Genomics and Transcriptomics in unselected Twins and in Major Depression”) 
study from dbGAP and the E-MEXP-1425 study from AE.

Our data selection process is depicted in Fig. 1. We selected 5 monozygotic discordant twin studies (meas-
uring discordance for phenotype) with at least 10 pairs in each of the studies from GEO (Table 1), which pro-
vided 92 MZ discordant twin pairs to analyze the gene expression samples from. We filtered out studies that had 
ambiguity in reporting (e.g., for some samples it was unclear as to which samples constitute a twin pair and what 
phenotypic status the samples had) and those that had with very low sample sizes (number of twin pairs <10). 
We filtered out 29 such studies.

We downloaded one study (phs000486.v1.p1) from dbGAP that has 28 MZ discordant twin pairs for major 
depression. Further, we downloaded a dataset (E-MEXP-1425) from ArrayExpress (AE) on Obesity that had 13 
MZ discordant twin pairs. The summary of all of these datasets that were used are shown in Table 1.

For the sex-specific analyses, we used 1 GEO study (GSE16059, CFS) along with the AE study (E-MEXP-1425, 
OB) and dbGAP study(phs000486.v1.p1, MDD), as these were the only three studies that had systematically pro-
vided the corresponding gender attribute information.

https://www.ncbi.nlm.nih.gov/geo/
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We wrote R scripts to download and transform these expression datasets into a compatible format for our 
analyses (https://github.com/stejat98/disctwinexpr/).

Phenotype-specific analysis of genes differentially expressed in twins.  In summary, we per-
formed differential gene expression analysis on the seven different MZ discordant twin gene expression studies 
across a total of 25,154 genes and identified a list of significant genes (using a false discovery rate [FDR] threshold 
of less than 0.05 and effect size threshold of 95th percentile [of absolute value of mean expression differences in 
each phenotype]) for the phenotype being observed in each study.

Specifically, we executed a paired t-test on the twins’ gene expression (probe- or transcript-level) data in each 
of the seven monozygotic discordant twin gene expression studies separately. We obtained the mean differences, 
the standard errors, and the p-values for each microarray probe. Next, we mapped each probe to its correspond-
ing gene using the annotation tables for each of the platform types used by the seven different studies. We per-
formed a fixed-effect meta-analysis across probe-level values for each gene (inspired by Sweeney et al.6) using the 
R ‘rmeta’ package16. This yielded the overall mean differences, standard errors, and the p-values for each gene for 
each of the seven studies. Since the seven studies used different microarray platforms, the numbers of total meas-
ured genes were different from study to study (the number of pairwise measured genes is in Table S2). To enhance 
comparison among the seven studies, we also computed the rank order of the expression differences in each study 
(available in the R Shiny web application: http://apps.chiragjpgroup.org/disctwinexprdb/).

Last, we also performed FDR (False Discovery Rate [Benjamini-Hochberg]7) correction on the p-values for 
each gene for each study. We identified significant genes within each study using a FDR threshold of 0.05 and 
effect size threshold of the 95th percentile (of absolute value of mean expression differences in each phenotype 
[Table S5 for thresholds]) and deemed these as “significant” in our study. We leveraged the same pipeline to 
identify sex-specific expression differences. Specifically, we carried out the paired t-test and the meta-analytic 
gene-level summarization for each sex group separately, using the CFS, OB, and MDD datasets.

We performed meta-analysis on each gene-specific value across all studies to measure how each gene’s mean 
expression difference varied across the seven studies for each of the 25,154 unique genes measured in total (across 
all studies). This was done by using the Dersimonian and Laird meta-analytic technique with the ‘metafor’ package17  
(rma.uni function).We also produced forest plots to illustrate the variance of expression levels for each gene 
(http://apps.chiragjpgroup.org/disctwinexprdb/). The meta-analysis yields two important metrics for measuring 
heterogeneity (I2 and QEp).The I2 estimate is a commonly used metric to measure percentage of variation in 
meta-analysis that is due to the actual heterogeneity of the studies included in the meta-analysis18. The QEp is 
a statistic (p-value) used to measure the significance of heterogeneity (with the null hypothesis that there is no 
heterogeneity)19.

Code availability.  We made our code accessible at (https://github.com/stejat98/disctwinexpr/).

Web Application.  We built a web application to visualize the results from our analyses using the Shiny Web 
Application Framework in R that is accessible at (http://apps.chiragjpgroup.org/disctwinexprdb/)20–22.
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